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An algorithm is developed for the numerical solution of the contact problem of an elastic Timoshenko-type shell subjected to 
arbitrarily large displacements and rotations, using mixed finite-element approximations. It is essential that six displacements of 
the faces of the shell are chosen as the required functions. This enables one, first, to simplify the formulation of contact problems 
in the mechanics of thin-walled structures, since functions by means of which the conditions for the non-penetration of the bodies 
are formulated are chosen as the required functions and, second, to obtain relations for the components of the Green-Lagrange 
strain tensor in curvilinear, orthogonal coordinates which accurately represent arbitrarily large displacements of a shell as a rigid 
body. © 2004 Elsevier Ltd. All rights reserved. 

The finite-element method is the most powerful numerical method for solving contact problems in the 
mechanics of shells. At the same time, the problem of constructing twisted finite elements of thin 
shells which have been subjected to arbitrarily large rotations and are interacting with rigid bodies is 
still far from being solved [1, 2]. The reason is concealed in the inadequate representation of large 
displacements of an element of a shell as a rigid whole by the deformation relations. It is therefore not 
surprising that, since there are no deformation relations in the literature which are capable of exactly 
representing an arbitrarily deformed state of a shell in local curvilinear coordinates, the concept of a 
"degenerate" (isoparametric) element has been essentially developed [3], which enables one, at the 
price of a substantial increase in the time required for the calculation, to represent arbitrarily large 
displacements of an element of a shell as a rigid whole in global Cartesian system of coordinates 
[2, 4]. 

An algorithm for the numerical solution of the contact problem for a shell which is subjected to 
arbitrarily large displacements and rotations is developed below using mixed finite-element 
approximations [7, 8] on the basis of the theory of elastic Timoshenko-type shells taking transverse 
compression into account [5, 6]. Since the displacements of the faces of the shell are chosen as the 
required functions [9, 10], this simplifies the formulation of contact problems in the mechanics of thin- 
walled structures [11]. 

1. D E F O R M A T I O N  R E L A T I O N S  I N  T H E  G E O M E T R I C A L L Y  
N O N - L I N E A R  T H E O R Y  O F  T I M O S H E N K O - T Y P E  S H E L L S  

Consider a shell of constant thickness h. As the reference surface S, we will take the internal surface 
of the shell, which we will refer to the orthogonal curvilinear coordinates ~l and a2, which are measured 
along the lines of principal curvatures. We shall read off the transverse coordinate c~3 in the direction 
of the outward normal to the surface S (Fig. 1). Suppose et and e 2 are unit vectors which are tangent 
to the coordinates lines cq and c~2, e3 is the unit vector of the normal, A,~ and k,~ are the Lam6 parameters 
and curvatures of the coordinate lines of the surface S, 6- and 6 + are the distances from the surface S 
to the lower surface S- and upper surface S ÷ of the shell, ui are the components of the displacement 
vector, eij are the components of the Green-Lagrange strain tensor, p~ are the external surface loads 
acting on the faces S -+, q = qvV + qt t + q3e3 is the vector of the external surface loads acting on the 
lateral surface 1~ and v and t are the normal and tangential unit vectors to the boundary contour F 
(Fig. 1). Here and henceforth, the Latin subscripts i, j, l, m = 1, 2, 3 and the Greek subscripts ~, 13, 7, 
6 =  1,2. 
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Fig. 1 

We shall make use of Timoshenko's kinematic hypothesis concerning the linear distribution of the 
displacements throughout the thickness of the shell [5, 6] 

u = £ Y ~ ( ~ 3 ) v  ±, u = £ u l e , ,  v + =  E r i e ,  (1.1) 
± i i 

where v-  are the displacement vectors of the points of the faces S ±, vT(%, ct2) are the components of 
these vectors and N-+(tx3) are linear functions of the form of the shell 

1 + ~(ct 3 -  a-) N-(ot3) = ~(a -0~3), N+(~3) = (1.2) 

We now introduce the displacements (1.1) into the strain relations of the three-dimensional theory 
of elasticity 1 [12] and, assuming that the tangential components of the Green-Lagrange strain tensor 
vary linearly along the thickness of the shell, we arrive at the strain relations of the geometrically non- 
linear theory of Timoshenko-type shells of average thickness [13] 

2E,~I~ = '~_N (%) v, c~" el~ + - - v  t~" % + - - - - ~ v  ,~. v~l ~ 
+ H i ,*~,,~ 

2~3 = p.e~+_--VHa '~'(e3+P)+(%-a)~%3'~' g3 = P e3+ P 

l ÷ - - 1 - -  ÷ I i = ~ ( v - v ) ,  v=~(v +v)  

(1.3) 

where H~ = Aa(1 + ka8 ±) are the Lam6 parameters of the faces S ±,/~a = A~(1 + k~8) are the Lam6 
parameters of the middle surface S, 8 = (8- + 8+)/2 is the distance from the reference surface to the 
middle surface, ~ is the vector of the displacement of a point of the middle surface of the shell, and the 
subscript 13, which follows after a comma, denotes partial differentiation with respect to a~. 

The strain relations (1.3) are extremely attractive from the point of view of their use in the finite- 
element method, since they exactly represent arbitrarily large displacements of a shell as a rigid body. 

Actually, the displacements of the faces of a shell as a rigid whole [14] can be represented in the 
form 

±R _ R + v = A + O R  ± ( 1 . 4 )  
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where R ± = r + 8±e3 are the radius vectors of the points of the surfaces, r is the radius vector of a 
point of the reference surface, A is the vector of the translational displacements of the shell and • is 
an orthogonal matrix which characterizes the rotation of the shell as a rigid whole about the point O 
(Fig. 1). The formula 

1 +R ~-~v,~ = O e ~ -  % (1.5) 

holds for the derivates of the rigid displacement vectors (1.4). On then introducing expressions (1.4) 
and (1.5) into the strain relations (1.3) and taking into account the property of an orthogonal transform 
to preserve the scalar vector product, we obtain 

R R 
2E:al~ = (@ea) .  (@el~)-ea.el~ = O, 21~33 = ( O e 3 ) - ( O e  3 ) - e 3 . e  3 = 0 

r 1 + kaOt 3 
2ga3 = 1 + ka~ [(0%). ( (~e3)-  e,~. e3] = 0 

which it was required to prove. 
For the purpose of using the strain relations (1.3) in the algorithm for the numerical solution of contact 

problems, we will represent them in the scalar form 

± ± ± (1.6) eai = ~ N  ((X3)(eai + Tlai) , E33 ---- e33 + 'I]33 
± 

where 

± 1 ± ± 1 ± 1 ± 
= - - ~ ' a ,  2e12 = --0.)1 + " ~ O 2  

± ( kah" 1 ± 
2ea3 = 1 + ~)~a-~--~aOa, e33 = ~3 

± 1 ±2 ±2 ±2 
rl,~,~ = ~-± 2[(~.,~) + ( % )  + (%) ], 

2(~a) 

± 1 .~+ ± _± ± ± ± 
'I'112 = .~ ~[AI002+A20)l +0102) 

2~1~2 

TI~3---- 1 ( .  ~± ± + 1 2 2 2 
~a a + [~'fl)a-- l~30a), n33 = ~(~I + 1~2 + [~3) (1.7) 

X ~ =  1 ± + ± ± 1 ± ± 

± ± 1 + -  vT,) O~ = -~ l )3 ,  o~ +kaDa, ~i ~" 7i(l)i 

1 
;~ = l +ka8 +, ~a = l +ka~, B a = ~iA~A.t,a (~[*a) 

2. T H E  H U - W A S H I Z U  F U N C T I O N A L  F O R  A G E O M E T R I C A L L Y  
N O N - L I N E A R  T I M O S H E N K O - T Y P E  S H E L L  

It is well known that the equilibrium equations, the strain relations, the generalized Hooke's  law 
equations and the boundary conditions on the face and end surfaces of a shell constitute the Euler 
equations and the natural boundary conditions of a certain variational problem. In this connection 
we introduce the approximations of the displacements (1.1) and the independently introduced 
deformations. 
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£ai = ~_~N±(Gt3)E~ai, E33 = E33 (2.1)  
± 

where E~(oq, (x2) and E~((xl, ~2) are the tangential and transverse tangential deformations of the faces 
of the shell and E33(~1, ~2) is the transverse compression of the shell, into the Hu-Washizu functional 
of the three-dimensional theory of elasticity [15]. As a result, when relations (1.6) and (1.7) are taken 
into account, we arrive at the following formula for the Hu-Washizu functional 

JHw = I:{rI- ~Ii+~j<6T~ij(E~ij-e~-'q;)+ ~i (+-P~)lJ~] -T33(E33-e33-1"133) } 

×AiAz~l~2d~ido~2-~Z(~vvl~v + ~vtl)~ + ~v319~)(I + kN~)ds 
F± 

X 

(2.2) 

Here, v~, vt ,  03 are the components of the displacement vectors of the faces S -+ in the local basis v, 
t, e 3 (Fig. 1), kN is the normal curvature of the curve F, II(E~., E33 ) is the elastic potential of the shell, 
T~., T33 are the resulting stresses and Try, Tvt, T~3 are the resulting external surface loads which are 
determined using the formulae 

(2.3) 
1 0 -  - - 1 -  - + 0 +  + - / . ~ 1 +  gT+~; ,+  ] 

DijtmEijEtm + 1-[ ~. ~ Z  Z [  OijlraEijElra + VijtmEoEtr . "{- ,t..,ijlra,t.,ijL, lm J 
i, jl, m 

8 + 

n ±  f + _ 1 - n  + n Diflrn = bijlmN ( ° t3 ) [N  (~3) ]  [ N  (~3) ]  d~3,  n = 0, 1 

8 -  

5 ÷ 6 + 8 + 

T~ai = I SrLiN±(~3)dot3' T33 = I $33d0~3' ~vK = I q'cN±(~3)dO~3' 
8- 6- 8 -  

K: = v,t,  3 

(2.4) 

where Sij are the components of the Piola-Kirchhoff symmetric stress tensor and bijlm a re  the stiffness 
characteristics of the material. Note that E]3 = E~-3 = E33 and baby3 = b~33 = 0 are taken in formulae 
(2.3). 

Taking account of the fact that the displacements, the deformations and the resulting stresses are 
independent functional variables, we represent a variation of the Hu-Washizu functional in the form 

~JHw I I I Z  I Z IV~iJ Z 0 + -  z'liJ lmL'lml/'311+ 1~,+ ~ + 3]~E/ij = - _ (DijtmEtm + - Dij33E3 
S L ± \i+j<6~.L_ l+m<6 

+ - 1];.)~T//j - T~ij(~e~ + 8Tl/~) } + ~ (-p~)81)~) + + (E~i j - eij 

+ [  T 3 3 -  Z (D331mElm+D331mEl+m)-D3333E331~E33+ 
l+m<6 

where 

+ (E33 - e33 - ~133)~T33 - T33(~ie33 + 5T133)]AIA2~I~2do~IdO~ 2 - 

r ±  

D;j3 3 o- 1 - + o+ 1 + + --. Dij33 + Dij33, Dij33 = Dij33 + Dij , D3333 = D;333 + D3333 

(2.5) 
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The complete relations of the generalized Hooke's  law 

Sij = ZbijlmElm (2.6) 
l ,  m 

can be used to calculate the components of the Piola-Kirchhoff symmetric stress tensor. However, in 
the analysis of shells made of incompressible materials or shells which are very similar to them as regards 
the characteristics of the materials for which Poisson's ratios are close to 1/2 [5, 10] and, also, with the 
aim of overcoming so-called Poisson wedging [8, 16], we shall approximately put bc~1333 -- 0 in relations 
(2.6). At the same time, the equation for the transverse normal stress is used in an unchanged form, 
that is, bc~1333 ¢ 0. This means that the underlined term in formula (2.5) has to be omitted. As a result, 
we arrive at an unsymmetrical rigidity matrix [13] which, however, does not introduce any substantial 
corrections into the numerical realization of the contact problem using a mixed finite-element model. 

3. T H E  M O D I F I E D  H U - W A S H I Z U  F U N C T I O N A L  F O R  S O L V I N G  
A C O N T A C T  P R O B L E M  OF A T I M O S H E N K O - T Y P E  S H E L L  

W I T H  A R I G I D  P U N C H  

To be specific, we will now assume that the contact of a shell with an absolutely rigid planar punch occurs 
over a part of the external surface of the shell S + and, moreover, that there is no friction in the contact 
region. We will write the conditions for non-penetration of the contacting bodies and the non-positiveness 
of the contact pressure q+ in the form 

+ + + 

g - v  . n > 0 ,  q c < O  (3.1) 

where g+(cq, O~2) is the initial clearance, that is, the shortest distance from a certain point of the shell 
M+(cq, c~2) belonging to the surface of assumed contact S + to the punch, and n is the unit vector of the 
normal to the plane of the punch. 

It is necessary to supplement inequalities (3.1) with the condition that the contact pressure is 
determined at points which come into contact with the rigid punch, that is, the following equality must 
be satisfied 

+( + V + qc  g - • n) = 0 (3.2) 

In order to solve the problem of the contact interaction of a shell with a rigid punch, we will consider 
a modified Hu-Washizu functional which augments the functional (2.2) with a term, which is responsible 
for satisfying contact conditions (3.1) and (3.2) and yet another term [1] which is associated with the 
regularization of the problem 

÷ S~ 

(3.3) 

where )~ is a Lagrange multiplier (the contact pressure) and c is a regularizing parameter. Note that 
the existence of a regularizing term in functional (3.3) implies the replacement of an absolutely rigid 
punch by a set of continuously distributed springs with a stiffness c. The limiting case when c ---) oo 
corresponds to the classical method of Lagrange multipliers. 

A formula for the variation of the modified Hu-Washizu functional will be required later. Taking 
account of expression (2.5), this formula can be represented in the form 

s2 

(3.4) 

4. AN A L G O R I T H M  F O R  T H E  N U M E R I C A L  S O L U T I O N  OF T H E  
C O N T A C T  P R O B L E M  U S I N G  A M I X E D  F I N I T E - E L E M E N T  M E T H O D  

A variation of the modified Hu-Washizu functional (3.4) for an element of a shell in its dimensionless 
curvilinear coordinates ~1 and ~2 can be written in matrix form as follows. 
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1 1 

= -I I[ (r-  vr) Sr 
- 1 - 1  

+ ( P + ~ , m ) r S I  (g+ mrv  ~X)d~ , ]ge ld~ ld~2-~  ^T - - - Tr~iVr( 1 + kN~)ds 

V T - + - + - + T - + - + - + 
= [ D I D  I 1 ) 2 D 2 D 3 1 ) 3 ] ,  V F = [ D v l ) v l )  t l )  t 1)31) 3 ] 

E r - + - + - + - + - + = [EllElIE22Ez22E122E122E132EI32Ez32E23E33] 

T - + - + - + - + - + 
e = [ellelle22e222el22el22el32el32e232e23e33] 

] ~ T  - + - + - + - + - + 
= [1] 11T] l l ' q 2 2 T I 2 2 2 1 ]  1221] 122T113 2T11321]  2321]  2 3 ~  33 ] 

,~T  [ T ~ I  + _ + _ + _ + _ + 
= T I 1 T 2 2 T 2 2 T I 2 T I 2 T I 3 T i 3 T 2 3 T 2 3 T 3 3  ] 

T r ^- ^+ ^ - ^ + ^ -  ^+ p r  - + - + - +] = [TvvTvvTvtTvtTv3Tv3], = [ - P l P l - P 2 P 2 - - P 3 P 3  

T el - - el el 
m = [OnlOn2On3], g = A1Az~l~zd Id  2 

(4.1) 

where 2d~ l a n d  2d~ 1 are the lengths of an element in the directions ~1 and (x2, v is a column matrix of 
the displacements, Vr is a column matrix of the displacements of the boundary contour of an element 
F el, E is a column matrix of the independently introduced deformation of the faces of the shell, e and 
11 are column matrices characterizing the deformation relations (1.6) and (1.7), T is a column matrix 
of the resulting stresses, Tr  is a column matrix of the resulting loads acting on the boundary of an element 
~1, p is a column matrix of the surface loads, and D is an 11 x 11 unsymmetrical matrix of the coefficients 
of elasticity, the elements of which are determined from relations (2.3) taking into account the 
assumptions [5, 8, 10, 13] made for calculating incompressible materials and, also, with the aim of 
overcoming Poisson wedging. 

In the functional (4.1), the column matrices v, E and T and the Lagrange multiplier ~ are independent 
functional variables and it is therefore necessary to use independent approximations for them in an 
element. For the displacements and the Lagrange multiplier, we shall use the standard bilinear 
approximation 

V = E N r V r ,  ~ ,  = ENr~,r, r = 1 . . . . .  4 ( 4 . 2 )  

r r 

wherevr  r - + - + - + = [OlrV array VV3rU 3r] are column matrices of the mesh-point displacements, Nr(~l, ~2) are 
linear functions of the form and ~ are the values of the Lagrange multiplier at the mesh points of the 
element. 

For the deformations, according to the method of double approximation [2, 17], which has been 
extended to the case where transverse compression is taken into account [7, 13], we have yet more simple 
formulae 

r tr2 r lr2 rl r2 
E =  ~ Q  E { 1 ~ 2  

rt, r 2 

(4.3) 

Here,  

+00  +00 +00 -00  +00 - 0 0  +00  00 (E°°) r = [ iE~°l E,, 2E~°2 E22 2 IE~2 2E,2 2 E , 3  2 E 1 3  2 E 2 3  2 E 2 3  E 3 3 ]  

(EOl)T t ig '-01 ~ + o 1 ~  ~ - o 1 ^ ~ + o 1 ~ o l .  --  [ ~.--lOig.+lO,) k-~-lO.) ~7+1o~,1o ] 
----" t ~ " l l  P- ' l l  ZP- 'I3 ZP-~I3 P-'33], ( E l ° )  T t ~ ' 2 2  L '22 ~"- '23 ~ '~ '23 "-'33J (4.4) 
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Q01 = 

- 1 0 0 0 0  

0 1 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 1 0 0  

0 0 0 1 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0  

, O lO = 

0 0 0 0  

0 0 0 0  

1 0 0 0  

0 1 0 0  

0 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 1 0  

0 0 0 1  

0 0 0 0  

0 

0 

0 

0 

0 
0 '  Q l l =  

0 

0 

0 

0 

1 

where Q00 is an 11 × 11 unit matrix, E °° is a column matrix which characterizes the homogeneous form 
of deformation of an element, E °1 and E l° are column matrices, characterizing the inhomogeneous forms 
of deformation and E ll = [E ill is a 1 × 1 matrix, the introduction of which simplifies the matrix 
calculations here and henceforth in this section, the superscripts rl and r2 take the values 0 and 1. We 
also note that the different nature of the approximation of the components of the Green-Lagrange 
strain tensor ensures the required number of degrees of freedom which, in turn, is responsible for the 
correct representation of the displacements of an element as a rigid whole [7, 13]. 

For the resulting stresses, we adopt the approximation, which is analogous to (4.3) and (4.4), 

fir2 fir2 r l r2 11 
T = ~ Q T ~1 ~2' Tll = [T33] 

r I , r 2 

= [ T-OOT+OO,r-4)OT+OOT--O0_+O0_-O0~+O0_-O0_+O0_O0. 
(TO0)  T t - I I  "11 " 22 --22 " 12 I 1 2  113 113 123 123 F33]  (4.5) 

(TOl) T [T-OIT+OIT"OIT+Olqr,OI'I ~_ [T-IOT+IO'p-IOT +10~10- 
= t - - I I  *11 • 13 *13 • 33] ( T I 0 ) T  t--22 *22 ~ 23 *23 I 3 3 l  

Introducing the approximations (4.2)-(4.5) into formula (4.1) and using the standard variational 
procedure of a mixed model of the finite-element method, we arrive at the following equations for the 
equilibrium of an element 

E r:2 = ( Q ~ : 2 ) r ( L r : 2 + A r ' r 2 u ) u ,  T ~:2 = ( Q ' : 2 ) r D Q ' : 2 E  ,,r2 

E r ~ + r 2  [ ( L r ' r 2  + 2A"'2U)rQr":T':2 + Brlr:A] = F 

r I r 2 3 

(4.6) 

where U T = [v(v2~v~v4 T] is the column matrix of the mesh-point displacements of an element, A T = 
[X1Xe)~3X4] is the column matrix of the mesh-point values of the Lagrange multiplier, F is the column 
matrix of the mesh-point loads, B r:2 are 24 × 4 matrices corresponding to the contact interaction of an 
element, L r:2 are 11 x 24 matrices characterizing the linear components of the strain tensor (1.6) and 
(1.7), A r:2 are 11 × 24 × 24 three-dimensional matrices characterizing the non-linear components of 
the strain tensor (1.6) and (1.7) and, at the same time, Arlr2U are 11 × 24 matrices, the elements of which 
are calculated using the formulae 

r~ r 2 E s  Apq s Us; (A U)vq = r, r2 p = 1 . . . . .  11; q,s  = 1 . . . . .  24 

Equations (4.6) are supplemented by relations which, according to formulae (3.1)-(3.3), are responsi- 
ble for the contact conditions being satisfied. The conditions 

+ r I. 
gp - mpVp - ~A,p = 0 ,  ~,p <_ 0 (4 .7)  
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must be satisfied in the contact zone (P ~ Io where Ic C {1, 2, 3, 4}) and, outside the contact zone 
(P ~ Ic), the conditions 

+ T 
gp-mpVp > O, ~.p = 0 (4.8) 

must be satisfied, where g+ are the values of the clearance at the mesh points of an element, and 
r [OnlrOn2rOn3r] are column matrices characterizing the unit vectors of the normal to the plane of m r = 

the punch at the mesh points of an element (r = 1 . . . . .  4). We also introduce the column matrices of 
the clearances at the mesh points of an element G r = [glg2g3g4+ + + +]. 

We will use an incremental approach to solve Eqs (4.6), taking into account the constraints (4.7) and 
(4.8), representing the required functions, the mesh-point loads and clearances in the form 

1 +AtErlr2 = tErlr2 + AE~:., 1 +A,T~,r2 = ,Tr:= + AT~,r= 

l+At U = tU+AU,  I + A t F = t F + A  F 

l+At A = tA+AA, I + A t G = t G + A G  

(4.9) 

Quantities with the superscripts t and t + At characterize the actual and final stress-strain state of the 
shell respectively, and A E  rlr2, AT rlr2, AU, AF, AA and AG are incremental variables. 

Next, introducing formulae (4.9) into relations (4.6) - (4.8) and taking into account the fact that the 
shell is at equilibrium in the actual state, we obtain the incremental equilibrium equations of an element 

A E  rlr2 = (Qr ' r2 )T( tnr l r2  + Ar'r2AU)AU, 

rlr 2 T rlr2 r{r2 1 (AT rlr2) = ( Q )  DQ AE ~ ~ x 

q, r23 (4.10) 

X [ 2 ( A r ' r z A U ) T Q r t r 2 t T  rlr2 + (tMr'r2 + 2 A r ' r 2 A U ) T Q r ' r 2 A T  r'r2 + Br'r2AA] = AF 

tMqr2 = L qr2 + 2Ar:2tu 

and, also, the incremental contact conditions when p ~ t+~tI c 

Ag; r 1 O, if pE Z 
- mpAVp - ~AXp = t + r t  t (4.11) 

- g + + m  ov  o, if p ~  I~ 

and, when p ~ t+A'I~ 

l -'~'w if p ~ t l  c 

A~.p-<[0, if p ~ ' l ~  

I-It~, if p e t  
+ r " e  P I~ 

Agp - mpAVp _> 

1 t + Tt - g + + m  0vp, if p~ '/~ 

(4.12) 

(4.13) 

-'),p, if P e  'Ic 
A),p = 

t 0, if 9 ~ ' I c  

where tI c and t+atI c are certain subsets of the set {1, 2, 3, 4}. 

(4.14) 
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Fig. 2 
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Eliminating the incremental variables AE r1"2 and AT rlr2 from relations (4.10), we arrive at the following 
system of non-linear equations in the incremental variables AU and AA 

1 rlr 2 T rlr2t rlr 2 
y~ ~%7~7~[2(A AU) Q T + 
r,. r~3 (4.15) 

"l-(tM fIr2 + 2Artr2AU)rDr'r2(tM r'r2 + Arjr2AU)AU + Br'r2AA] = AF 

which has to be solved together with the incremental contact conditions (4.11)-(4.14). The 11 x 11 
matrices 

D r,r2 = Qrlr2(Qr,  r2)TDQr,  r2(Qqr2)T 

are introduced into formula (4.15) as a convenient notation. 
The standard procedure for setting up the elements in the ensemble to obtain a system of non-linear 

equations in the global vector of the mesh-point variables is then used; this will not be discussed here. 
The method of trial and error was used to solve the problem. The essence of this method is as follows. 

A starting approximation of the contact zone is initially specified, the non-linear system of equations 
(4.11), (4.14) and (4.15) is solved by the Newton-Raphson method and it is then checked that inequalities 
(4.12) and (4.13) are satisfied for each mesh point. If inequality (4.12) is not satisfied, the mesh point 
is moved out of the contact zone. In the case when inequality (4.13) is not satisfied, the mesh point is 
added to the contact zone. 

5. R E S U L T S  OF N U M E R I C A L  C A L C U L A T I O N S  

We will consider a circular arc which is pressed onto a rigid base by a concentrated force P, imposed 
on the upper section A, as shown in Fig. 2. The mechanical and geometrical characteristics of the arc 

7 2 were taken to be as follows: E = 10 N/mm,  Poisson s ratio v = 0, the radius of the median circumference 
R = 100 mm, the thickness h = 1 mm and the width b = 1 mm. This problem has attracted attention 
(for example, see [18, 19]) from the point of view of studying the problem of the contact interaction of 
thin-walled structures which are subjected to large displacements and arbitrarily large rotations. 

In view of the symmetry of the problem, one half of the arc, which was subdivided into 30 or 60 
elements, was considered. Five loading steps were used into order to bring the low point of section 
A into "contact" with the high point of section B. In this case, the value P = 88.40, where P = 
120PR2/(Eh3b) was obtained for the compressing force. However, numerical experiments showed that 
a smaller number of increments can be used with an appropriate choice of the initial contact zone. The 
dependence of the dimensionless force on the dimensionless deflection of the median point of section 
A is represented by the solid curve in Fig. 3. The results of a calculation [19] using an incremental 
approach based on the well-known theory of axisymmetric shells of revolution of finite deflection [20], 
implemented numerically using the mixed finite-element method, are shown by the small open circles. 
Note that no data was given in [19] regarding the number of loading steps which was used. 
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Two values of the regularizing parameter: e = 103 and e = 105 were chosen for the calculations. It 
was found that the regularizing parameter had only a small effect on the form of the load-deflection 
curve. At the same time, a substantial dependence of the coordinates of the initial point of contact (tPint) 
and the final point of contact (q~ext) on the regularizing parameter e was observed, since only a few mesh 
points come into contact with the base. The results of the numerical calculations are shown in Fig. 4 
and Table 1, where the following notation is used: (p is the central angle, measured in an anticlockwise 
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direction from section B to section A, N ~1 is the number of elements and Qc is the dimensionless reaction 
of the contact pressure q+. 

- 120R 2 r t +dS 
Qc = E----~ J jqc 

s; 

The solid curves in Fig. 4 correspond to e = 105, the dashed curves correspond to e = 103 and the results 
of the calculations by Noor and Kim [19] are represented by the open circles ((pext) and dark circles 
((Pint). Note that the reaction of the contact pressure Qc is found with high accuracy, since a fairly similar 
value was indicated above in the case of a dimensionless compressive force P. 

As a second example, we consider a circular cylindrical shell which is pressed onto a rigid base by a 
concentrated force P imposed on the central section A (Fig. 5). The mechanical and geometrical 
characteristics of the shell are: E = 1 0  7 N/mm 2, v = 0.3, R = 100 mm, L = 200 mm and h = 1 mm. 

In view of the symmetry of the problem, only one quadrant is considered, which is subdivided into 
10 × 60 elements. Five loading steps were used and the value e = 103 was adopted. Graphs of the 
dimensionless force P = 120(1 - vz)PRZ/(Eh3L) against the dimensionless deflection of the median points 
of section A (the dot-dash curve) and section B (the dashed curve) are shown in Fig. 3. It can be seen 
that they practically coincide with the solid curve for the example considered above. The mesh points 
which have come into contact with the base for the different values of the load are shown in Table 2. 
Here, s is the meridional coordinate, (P = nrt/60 is the central angle and the symbols x, O, A, []  
correspond to the following values of the compressive force: P/4, P/2, 3P/4, P = 87.36. 
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